Theorem on orthonormal sequences
In mathematics , especially functional analysis , Bessel's inequality is a statement about the coefficients of an element
x
{\displaystyle x}
in a Hilbert space with respect to an orthonormal sequence . The inequality was derived by F.W. Bessel in 1828.[ 1]
Countable orthonormal sequence in a Hilbert space [ edit ]
Let
H
{\displaystyle H}
be a Hilbert space, and suppose that
e
1
,
e
2
,
.
.
.
{\displaystyle e_{1},e_{2},...}
is an orthonormal sequence in
H
{\displaystyle H}
. Then, for any
x
{\displaystyle x}
in
H
{\displaystyle H}
one has
∑
k
=
1
∞
|
⟨
x
,
e
k
⟩
|
2
≤
‖
x
‖
2
,
{\displaystyle \sum _{k=1}^{\infty }\left\vert \left\langle x,e_{k}\right\rangle \right\vert ^{2}\leq \left\Vert x\right\Vert ^{2},}
where ⟨·,·⟩ denotes the inner product in the Hilbert space
H
{\displaystyle H}
.[ 2] [ 3] [ 4] If we define the infinite sum
x
′
=
∑
k
=
1
∞
⟨
x
,
e
k
⟩
e
k
,
{\displaystyle x'=\sum _{k=1}^{\infty }\left\langle x,e_{k}\right\rangle e_{k},}
consisting of "infinite sum" of vector resolute
x
{\displaystyle x}
in direction
e
k
{\displaystyle e_{k}}
, Bessel's inequality tells us that this series converges . One can think of it that there exists
x
′
∈
H
{\displaystyle x'\in H}
that can be described in terms of potential basis
e
1
,
e
2
,
…
{\displaystyle e_{1},e_{2},\dots }
.
For a complete orthonormal sequence (that is, for an orthonormal sequence that is a basis ), we have Parseval's identity , which replaces the inequality with an equality (and consequently
x
′
{\displaystyle x'}
with
x
{\displaystyle x}
).
Bessel's inequality follows from the identity
0
≤
‖
x
−
∑
k
=
1
n
⟨
x
,
e
k
⟩
e
k
‖
2
=
‖
x
‖
2
−
2
∑
k
=
1
n
Re
⟨
x
,
⟨
x
,
e
k
⟩
e
k
⟩
+
∑
k
=
1
n
|
⟨
x
,
e
k
⟩
|
2
=
‖
x
‖
2
−
2
∑
k
=
1
n
|
⟨
x
,
e
k
⟩
|
2
+
∑
k
=
1
n
|
⟨
x
,
e
k
⟩
|
2
=
‖
x
‖
2
−
∑
k
=
1
n
|
⟨
x
,
e
k
⟩
|
2
,
{\displaystyle {\begin{aligned}0\leq \left\|x-\sum _{k=1}^{n}\langle x,e_{k}\rangle e_{k}\right\|^{2}&=\|x\|^{2}-2\sum _{k=1}^{n}\operatorname {Re} \langle x,\langle x,e_{k}\rangle e_{k}\rangle +\sum _{k=1}^{n}|\langle x,e_{k}\rangle |^{2}\\&=\|x\|^{2}-2\sum _{k=1}^{n}|\langle x,e_{k}\rangle |^{2}+\sum _{k=1}^{n}|\langle x,e_{k}\rangle |^{2}\\&=\|x\|^{2}-\sum _{k=1}^{n}|\langle x,e_{k}\rangle |^{2},\end{aligned}}}
which holds for any natural n .
In the theory of Fourier series , in the particular case of the Fourier orthonormal system, we get if
f
:
R
→
C
{\displaystyle f\colon \mathbb {R} \to \mathbb {C} }
has period
T
{\displaystyle T}
,
∑
k
∈
Z
|
∫
0
T
e
−
2
π
k
t
/
T
f
(
t
)
d
t
|
2
≤
T
∫
0
T
|
f
(
t
)
|
2
d
t
.
{\displaystyle \sum _{k\in \mathbb {Z} }\left\vert \int _{0}^{T}e^{-2\pi kt/T}f(t)\,\mathrm {d} t\right\vert ^{2}\leq T\int _{0}^{T}\vert f(t)\vert ^{2}\,\mathrm {d} t.}
In the particular case where
f
:
R
→
R
{\displaystyle f\colon \mathbb {R} \to \mathbb {R} }
, one has then
|
∫
0
T
f
(
t
)
d
t
|
2
+
2
∑
n
=
1
∞
|
∫
0
T
cos
(
2
π
k
t
/
T
)
f
(
t
)
d
t
|
2
+
2
∑
n
=
1
∞
|
∫
0
T
sin
(
2
π
k
t
/
T
)
f
(
t
)
d
t
|
2
≤
T
∫
0
T
|
f
(
t
)
|
2
d
t
.
{\displaystyle \left\vert \int _{0}^{T}f(t)\,\mathrm {d} t\right\vert ^{2}+2\sum _{n=1}^{\infty }\left\vert \int _{0}^{T}\cos(2\pi kt/T)f(t)\,\mathrm {d} t\right\vert ^{2}+2\sum _{n=1}^{\infty }\left\vert \int _{0}^{T}\sin(2\pi kt/T)f(t)\,\mathrm {d} t\right\vert ^{2}\leq T\int _{0}^{T}\vert f(t)\vert ^{2}\,\mathrm {d} t.}
More generally, if
H
{\displaystyle H}
is a pre-Hilbert space and
(
e
α
)
α
∈
A
{\displaystyle (e_{\alpha })_{\alpha \in A}}
is an orthonormal system, then for every
x
∈
H
{\displaystyle x\in H}
[ 1]
∑
α
∈
A
|
⟨
x
,
e
α
⟩
|
2
≤
‖
x
‖
2
{\displaystyle \sum _{\alpha \in A}|\langle x,e_{\alpha }\rangle |^{2}\leq \lVert x\rVert ^{2}}
This is proved by noting that if
F
⊆
A
{\displaystyle F\subseteq A}
is finite, then
∑
α
∈
F
|
⟨
x
,
e
α
⟩
|
2
≤
‖
x
‖
2
{\displaystyle \sum _{\alpha \in F}|\langle x,e_{\alpha }\rangle |^{2}\leq \lVert x\rVert ^{2}}
and then by definition of infinite sum
∑
α
∈
A
|
⟨
x
,
e
α
⟩
|
2
=
{
∑
α
∈
F
|
⟨
x
,
e
α
⟩
|
2
:
F
⊆
A
is finite
}
≤
‖
x
‖
2
.
{\displaystyle \sum _{\alpha \in A}|\langle x,e_{\alpha }\rangle |^{2}={\Bigl \{}\sum _{\alpha \in F}|\langle x,e_{\alpha }\rangle |^{2}:F\subseteq A{\text{ is finite}}{\Bigr \}}\leq \lVert x\rVert ^{2}.}
This article incorporates material from Bessel inequality on PlanetMath , which is licensed under the Creative Commons Attribution/Share-Alike License .
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics
Basic concepts Main results Other results Maps Examples